
 

TECHNICAL REPORT 1930 
July 2005 

Multiobjective Optimization 
 on Function Spaces: 

 A Kolmogorov Approach 
 

J. C. Allen 
D. Acero 

  

 

 

 

Approved for public release;  
distribution is unlimited. 

SSC San Diego 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2005 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Multiobjective Optimization on Function Spaces: A Kolmogorov
Approach 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Space and Naval Warfare Systems Center,53560 Hull Street,San 
Diego,CA,92152-5001 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

62 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 

TECHNICAL REPORT 1930 
July 2005 

Multiobjective Optimization 
on Function Spaces: 

 A Kolmogorov Approach 

J. C. Allen 
D. Acero 

 

 

 

 

 
Approved for public release;  

distribution is unlimited. 

 
SSC San Diego 

San Diego, CA 92152-5001 



Executive Summary

This report originated in the H∞ Research Initiative of the Office of Naval Research
and the ILIR Program of SPAWAR Systems Center San Diego. These programs
migrated H∞ Engineering into fleet applications, specifically wideband impedance
matching and wideband amplifier optimization. Research in these applications pro-
duced several papers [24], [23], [3], [4], four patents, a book [2], and sparked the
Defense Advanced Research Projects Agency’s interest in Digital H∞ Engineering.

As the applications coalesced, a general principle underlying these optimization
problems became apparent—that solutions of these optimization problems could be
characterized by the Kolmogorov Criterion. This report makes explicit that the Kol-
mogorov Criterion can specialize with sufficient detail to yield concrete and compu-
tationally viable tests that identify solutions to difficult optimization problems.

Specifically, the classical “equal-ripple” characterization of best polynomial ap-
proximation is generalized to nonlinear polynomial optimization, and then general-
ized again to multiobjective polynomial optimization. Thus, results in polynomial
optimization stretching over this last century readily fit into a single framework and
are illustrated with applications in filter design and control theory. In addition to the
finite-dimensional polynomials, the Kolmogorov Criterion also applies to the infinite-
dimensional disk algebra. The disk algebra is basic to signal processing and control
theory. Many engineering problems in these disciples are optimization problems on
the disk algebra. The Kolmogorov Criterion readily characterizes the minimizers of
these nonlinear optimization problems.

By making explicit the Kolmogorov Criterion and working specific examples, this
report equips researchers with a general approach to optimization on spaces of func-
tions and a collection of accessible research problems.
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1 The Mathematical Summary

Let Z be a compact subset of the complex numbers C. Let C(Z,C) denote the
complex-valued functions that are continuous on Z. A real-valued function Γ : Z ×
C → IR is called a performance function. A continuous performance function induces
a continuous objective function γ : C(Z,C) → IR:

γ(h) := sup{Γ(z, h(z)) : z ∈ Z}.

Let H denote a subset of C(Z, C). Minimization of this objective function γ on H is
the general optimization problem:

inf{γ(h) : h ∈ H ⊂ C(Z, C)}.

Important for both theory and computation is recognizing solutions to this minimiza-
tion problem. Specifically, if you were handed a minimizer

hmin := argmin{γ(h) : h ∈ H},

could you recognize that hmin was a minimum of γ? Recognizing such minimizers
is the characterization problem. The multiobjective characterization problem has
Γ : Z ×C → IRM and minimizes the corresponding vector-valued function:

γ(h) :=




γ1(h)
γ2(h)

...
γM(h)




γm(h) := sup{Γm(z, h(z)) : z ∈ Z}.

We consider the characterization problem for the following subspaces:

• Polynomials PN

• Disk algebra A(D)

The Kolmogorov Criterion provides an easy route to the necessary conditions that
characterize a minimizer while the interpolating properties of the subspaces complete
the sufficiency arguments.

For optimization on the polynomials, a new characterization of polynomial mini-
mizers is obtained. This characterization is a substantial extension of the well-known
“equal-ripple” theorem of polynomial approximation [11]. Applications to nonlinear
approximation and spectral factorization illustrate this result.

For optimization on the infinite-dimensional disk algebra, we recapture Helton and
Merino’s [17] flatness and winding number characterization of minimizers. The point
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of this recapitulation is to show flexibility of the Kolmogorov approach. Applications
to impedance matching and control theory illustrate the characterization and bring
us to minimizing multiple objective functions.

For multiobjective optimization, a new identification of polynomial minimizers is
obtained by spreading the equal-ripple result over the multiple objective functions.
However, a “phase-splitting” phenomenon confounds the sufficiency argument. Nev-
ertheless, this new theory is sufficient to explore the set of all possible minima and
uncover a surprisingly fine structure.

In summary, Kolmogorov Criterion is a computational framework for exploring
optimization theory in general with sufficient detail to deliver specific results on op-
timization on function spaces.

2 Notation and Preliminaries

The real numbers are denoted by IR. Real N -dimensional space is denoted by IRN .
The closed positive cone of IRN is denoted by IRN

+ . The complex numbers are denoted
by C. Complex N -dimensional space is denoted by CN . Throughout this report, Z
denotes a compact subset of C. The open unit disk

D := {z ∈ C : |z| < 1}

has the unit circle T as boundary

T := {z ∈ C : |z| = 1}.

If E is a Banach space with norm ‖ ◦ ‖E , C(Z, E) denotes the set of continuous
functions h : Z → E with norm

‖h‖∞ := sup{‖h(z)‖E : z ∈ Z}.

In more detail,

• C(Z, IR) denotes the set of continuous real-valued functions on Z

• C(Z,C) denotes the set of continuous complex-valued functions on Z

• C(Z,CM) denotes the continuous CM -valued functions on Z

If Γ ∈ C(Z ×C, IR) is continuous, it lifts to the mapping Γ̃ : C(Z,C) → C(Z, IR)

Γ̃(h; z) = Γ(z, h(z))
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that induces the objective function γ : C(Z, C) → IR

γ(h) := sup{Γ(z, h(z)) : z ∈ Z}.

The associated critical set of h ∈ C(Z,C) is denoted

crit[γ(h)] := {z ∈ Z : γ(h) = Γ(z, h(z))} .

If H is a subspace of C(Z, C), a nonzero ∆h ∈ H is called a direction of nonincrease
[9] or direction of descent for γ provided for all t > 0 sufficiently small

γ(h + t∆h) ≤ γ(h).

The function h ∈ H is called a local minimum for γ provided for all ∆h ∈ H sufficiently
small there holds

γ(h + ∆h) ≥ γ(h).

A Taylor’s expansion in C(Z,C) is needed. Following Helton’s notation, recall the
derivative on C has the form [22]

∂ =
∂

∂z
=

1

2

{
∂

∂x
− i

∂

∂y

}
.

If Γ : C → IR is C2, Taylor’s expansion is

Γ(h + ∆h) = Γ(h) +
∂Γ

∂x
(h)∆u +

∂Γ

∂y
(h)∆v + O[|∆h|2]

= Γ(h) + 2ℜ[∂Γ(h)∆h] + O[|∆h|2],

where ∆h = ∆u + i∆v ∈ C. The Omega Lemma lifts this expansion to the corre-
sponding expansion for Γ̃ operating on C(Z,C).

Lemma 1 (Omega) [1] Let E and F be Banach spaces. Let U ⊆ E be open. Assume
g : U ⊆ E → F is a Cr map (r > 0) with first variation Dg : E → F . Let M be a
compact topological space. Then the map g̃ : C(M, U) → C(M, F ) defined by

g̃(h; m) := g(h(m))

is also Cr. The derivative of g̃ at h ∈ C(M, U) is denoted Dg̃(h) and is the linear
map Dg̃(h) : C(M, E) → C(M, F )

Dg̃(h)[∆h; m] := Dg(h(m))[∆h(m)].

The only modification needed to get Taylor’s expansion is to account for the fact
that the domain of Γ is Z × C. Let

∂1Γ(z1, z2) =
∂Γ

∂z1

(z1, z2), ∂2Γ(z1, z2) =
∂Γ

∂z2

(z1, z2).
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Lemma 2 (Γ) Let Z ⊂ C be compact. Let U ⊆ C be an open subset containing Z.
Let Γ : U × C → IR be Cr (r > 0) with first variation

DΓ(z1, z2) = [∂1Γ(z1, z2) ∂2Γ(z1, z2)] .

Then the map Γ̃ : C(Z,C) → C(Z, IR) defined by

Γ̃(h; z) := Γ(z, h(z))

is also Cr. The derivative of Γ̃ at h ∈ C(Z, C) is the linear map DΓ̃(h) : C(Z, C) →
C(Z, IR)

DΓ̃(h)[∆h; z] := 2ℜ[∂2Γ(z, h(z))∆h(z)].

The Taylor expansion exists on C(Z,C) as

Γ(z, h(z) + ∆h(z)) = Γ(z, h(z)) + 2ℜ[∂2Γ(z, h(z))∆h(z)] + O[‖∆h‖2
∞],

where O[‖∆h‖2
∞] does not depend on z ∈ Z.

Proof: Let h ∈ C(Z,C2) be written as

h(z) =

[
h1(z)
h2(z)

]
=

[
u1(z) + iv1(z)
u2(z) + iv2(z)

]

and with the corresponding notation for ∆h(z). The Omega Lemma gives that Γ̃ :
C(Z,C2) → C(Z, IR) defined by Γ̃(h; z) := Γ(h1(z), h2(z)) is Cr with derivative

DΓ̃(h)[∆h; z] = DΓ(h(z))∆h(z)

=

[
∂Γ

∂x1
(h(z))

∂Γ

∂y1
(h(z))

∂Γ

∂x2
(h(z))

∂Γ

∂y2
(h(z))

]



∆u1(z)
∆v1(z)
∆u2(z)
∆v2(z)




= 2ℜ[∂1Γ(h(z))∆h1(z)] + 2ℜ[∂2Γ(h(z))∆h2(z)].

Restrict Γ̃ to the affine space

M = {id} × C(Z,C) =

{[
z

h(z)

]
: h ∈ C(Z,C)

}
.

M has tangent space

TM = {0} × C(Z,C) =

{[
0

∆h(z)

]
: ∆h ∈ C(Z,C)

}
.
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Γ̃ restricted to M has derivative

D(Γ̃|M)(h)[∆h; z] = DΓ(h)

[
0

∆h(z)

]
= 2ℜ[∂2Γ(z, h(z))∆h(z)].

Taylor’s expansion follows from this first variation. ///

The end-of-proof symbol is “///.” On occasion, a point x will be ”added” to a
subset B of a vector space:

x + B = {x + b : b ∈ B}.

Likewise, the sum of sets A and B of a vector space is denoted

A + B = {a + b : a ∈ A, b ∈ B}.

Table 1: Summary of notation.

Variable Description
IR real numbers

IRN real N -dimensional space
IR+ non-negative real numbers
IRN

+ positive cone of IRN

C complex numbers
CN complex N -space
D open unit disk in C
T unit circle

C(Z, E) continuous E-valued functions on the compact set Z
PN real polynomials of degree not exceeding N

A(D) disk algebra
crit[γ(h)] critical set of γ(h)

z complex conjugate of z
/// end-of-proof symbol
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3 The Kolmogorov Criterion

The Kolmogorov Criterion characterizes optimal points of the best approximation
problem and the minimizers of convex functions. For brevity, the Kolmogorov Cri-
terion is stated only for the best approximation problem while the text develops the
criterion for the nonlinear minimization problems.

Theorem 1 (Kolmogorov Criterion) [7, pages 6–11]. Let X be a Bananch space
with dual space X∗. Let K a convex subset of X. The following are equivalent:

(a) k0 ∈ K is a best approximation to x ∈ X:

‖x − k0‖ = inf{‖x− k‖ : k ∈ K}.

(b) There exists an x∗ ∈ X∗ that has unit norm

‖x∗‖ = 1,

that supports the error function

〈x∗, x− k0〉 = ‖x − k0‖,

and belongs to the negative cone of K

0 ≥ ℜ[〈x∗, k〉] (k ∈ K).

For nonlinear functions, the first variation “almost” convexifies the problem. How-
ever, the nonlinearity splits the necessary and sufficient conditions of the Kolmogorov
Criterion. The necessary condition for optimization on PN and A(D) is the easy part
of the Kolmogorov Criterion [7, pages 6–11]. Although the result holds for arbitrary
sets using tangent and contingent cones, we state it only for subspaces.

Lemma 3 (Descent) Let Z ⊂ C be compact. Let H be a closed linear subspace of
C(Z,C). Let U be an open subset containing Z. Let Γ : U × C → IR be C2. Define
γ : H → IR by

γ(h) := sup{Γ(z, h(z)) : z ∈ Z}.

Assume H is boundedly compact. If h ∈ H is not a local minimum, there exists a
nonzero ∆h ∈ H such that

0 ≥ ℜ[∂2Γ(z, h(z))∆h(z)] (z ∈ crit[γ(h)]).
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Proof: If h ∈ H not a local minimum, there exists a nonzero sequence {∆hn} ⊂ H
converging to zero such that γ(h + ∆hn) ≤ γ(h). Set tn := ‖∆hn‖∞ > 0 and
un := t−1

n ∆hn. Compactness of H implies that the bounded sequence {un} contains
a convergent subsequence. By relabeling, let un → ∆h ∈ H. Because un has unit
norm, ∆h cannot be zero. For all z ∈ crit[γ(h)], Lemma 2 provides the expansion:

γ(h + ∆hn) ≥ Γ(z, h(z) + ∆hn(z))

= Γ(z, h(z)) + 2ℜ [∂2Γ(z, h(z))∆hn(z)] + O[t2n]

= γ(h) + 2ℜ [∂2Γ(z, h(z))∆hn(z)] + O[t2n].

Subtract γ(h) from both sides, divide by tn > 0 to get

0 ≥ ℜ [∂2Γ(z, h(z))un(z)] + O[tn].

Letting n → ∞ gives the result. ///

The Descent Lemma (Lemma 3) has a clean proof that reveals why boundedly
compact supplies a “direction of descent.” It also supplies various points-of-departure
for more sophisticated results. For example, a minimization test is obtained, provided
the “=” in the “≥” is handled with care.

Lemma 4 (Minimum Test) Let Z ⊂ C be compact. Let H be a closed linear
subspace of C(Z, C). Let U be an open subset containing Z. Let Γ : U × C → IR be
C2. Define γ : H → IR by

γ(h) := sup{Γ(z, h(z)) : z ∈ Z}.

Let h ∈ H. If there exists a ∆h ∈ H such that

0 > ℜ[∂2Γ(z, h(z))∆h(z)] (z ∈ crit[γ(h)]),

h ∈ H cannot be a local minimum for γ.

Proof: Compactness of Z and continuity give the existence of a δ > 0 such that
ℜ [∂2Γ(z, h)∆h] ≤ −δ < 0 on crit[γ(h)]. Continuity gives an open neighborhood U of
crit[γ(h)] such that for all z ∈ U there holds:

ℜ [∂2Γ(z, h)∆h(z)]] ≤ −δ/2 < 0.

Then for z ∈ U and for t > 0 sufficiently small there holds

Γ(z, h(z) + t∆h(z)) = Γ(z, h(z)) + t2ℜ[∂2Γ(z, h(z))∆h(z)] + O[t2]

≤ γ(h) − δt + O[t2]

< γ(h).

7



The first equality is obtained by taking t > 0 so small that t∆h ∈ B(0, ǫ) and applying
Lemma 2. The first inequality follows from the δ bound on U . The last inequality
follows by taking t > 0 small enough so that the first-order term dominates the
second-order term. For z ∈ Z \ U , continuity forces Γ(z, h(z)) < γ(h). Continuity of
Γ and compactness of Z \ U imply

Γ(z, h(z) + t∆h(z)) < γ(h)

for t > 0 sufficiently small. Thus, γ(h + t∆h) < γ(h) for all t > 0 sufficiently small.
Consequently, h cannot be a local minimum of γ. ///

The Minimum Test (Lemma 4) tells us that h ∈ H cannot be a local minimum if
we can find a ∆h ∈ H that “interpolates” the first variation ∂2Γ(h) on the critical set
crit[γ(h)]. Conversely, if h ∈ H is a local minimum, no such interpolator can exist.
That is, ℜ[∂2Γ(z, h(z))∆h(z)] must assume positive and negative values on crit[γ(h)]
for any ∆h ∈ H. Put another way, a local minimum will force ∂2Γ(z, h(z))∆h(z) to
wind around zero. Thus, even at this abstract level, the winding numbers appear in
the characterization of minima.

The Descent Lemma (Lemma 3) uses a “≤”. The Minimum Test (Lemma 4) needs
a “<” . The necessary and sufficient conditions fail on the “=”. The bulk of our
efforts are devoted to bridging this gap. The basic idea is to exploit the interpolating
properties of the subspaces. The polynomials are the classic interpolating space.

4 Optimization on PN

It is instructive to consider the minimization problem for the real polynomials PN in
C([0, 1], IR). Let Γ : [0, 1] × IR → IR be C2. The complex derivative is unnecessary
but adapt the notation as follows:

∂2Γ(x1, x2) :=
∂Γ

∂x2
(x1, x2).

The open set condition in Lemma 2 becomes [0, 1] ⊂ U ⊂ IR so that non-differentiability
at 0 or 1 is not an issue. Define the mapping γ : C([0, 1], IR) → IR by

γ(h) := sup{Γ(x, h(x)) : x ∈ [0, 1]}.

Suppose h ∈ PN is a local minimum. The Descent Lemma gives that no ∆h ∈ PN

exists such that
∂2Γ(x, h(x))∆h(x) < 0 (x ∈ crit[γ(h)]).

The interpolating properties of the polynomials force a classical support and align-
ment condition.
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Lemma 5 (Support) Let U be an open subset containing [0, 1]. Let Γ : U × IR → IR
be C2. Define the mapping γ : C([0, 1], IR) → IR by

γ(h) := sup{Γ(x, h(x)) : x ∈ [0, 1]}.

Suppose h ∈ PN is a local minimum of γ : PN → IR. Assume ∂2Γ(x, h(x)) 6= 0 for
x ∈ crit[γ(h)]. Then |crit[γ(h)]| ≥ N + 2

Proof: If crit[γ(h)] contains N + 1 points or less, there exists a ∆h ∈ PN such that

∆h(x) = −sign(∂2Γ(x, h(x))) (x ∈ crit[γ(h)]).

This forces
∂2Γ(x, h(x))∆h(x) < 0 (x ∈ crit[γ(h)]).

By the Minimum Test (Lemma 4), h ∈ PN is not a local minimum. This contradic-
tion forces at least N + 2 points into crit[γ(h)]. ///

Lemma 6 (Alignment) Let U be an open subset containing [0, 1]. Let Γ : U × IR →
IR be C2. Define the mapping γ : C([0, 1], IR) → IR by

γ(h) := sup{Γ(x, h(x)) : x ∈ [0, 1]}.

Suppose h ∈ PN ⊂ C([0, 1], IR) is a local minimum of γ : PN → IR. Assume
∂2Γ(x, h(x)) 6= 0 for x ∈ crit[γ(h)]. Then ∂2Γ(x, h(x)) admits an alternating sequence
of length N + 2 on crit[γ(h)]. That is, there are at least N + 2 points xn ∈ crit[γ(h)]

0 ≤ x1 < . . . x2 . . . < xN+2 ≤ 1

such that
sign(∂2Γ(xn, h(xn))) = −sign(∂2Γ(xn+1, h(xn+1))).

Proof: This standard argument is from Cheney [11]. If ∂2Γ(x, h(x)) alternates
only N + 1 times on crit[γ(h)], then a polynomial ∆h with N zeros placed at the
sign changes of ∂2Γ(x, h(x)) and by multiplication by ±1 will have opposite sign as
∂2Γ(x, h(x)) on crit[γ(h)]. Thus, ∂2Γ(x, h(x))∆h(x) < 0 on crit[γ(h)]. By the Mini-
mum Test (Lemma 4), h ∈ PN is not a local minimum. ///

The satisfying property of Haar spaces is that this condition is strong enough
to force a useful converse. The proof reveals how the inequality furnished by the
Descent Lemma must be folded into the strict inequality required by the Minimum
Test (Lemma 4).
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Corollary 1 Let U be an open subset containing [0, 1]. Let Γ : U × IR → IR be C2.
Define the mapping γ : C([0, 1], IR) → IR by

γ(h) := sup{Γ(x, h(x)) : x ∈ [0, 1]}.

Assume h ∈ PN and ∂2Γ(x, h(x)) 6= 0 for x ∈ crit[γ(h)]. Then the following are
equivalent:

(a) h ∈ PN is a local minimum.

(b) ∂2Γ(x, h(x)) admits alternating sequence of length N + 2 on crit[γ(h)].

Proof: We have (a)⇒(b) so we need to prove (b)⇒(a). Suppose (b) holds but (a) is
not true. The Descent Lemma (Lemma 3) provides a nonzero ∆h ∈ PN such that

∂2Γ(x, h(x))∆h(x) ≤ 0

on crit[γ(h)]. Because ∂2Γ(x, h(x)) is continuous, does not vanish on crit[γ(h)], and
alternates N + 2 times on 0 ≤ x1 < . . . xN+2 ≤ 1, ∆h is forced to have at least one
zero in each interval [xn, xn+1] for n = 1, . . . , N + 1. If ∆h was simply continuous,
∆h could have as few as floor(N/2) + 1 zeros. This configuration happens when the
zeros in each interval are common to adjacent end points. Figure 1 illustrates this
phenomenon for N = 3. The alternating sequence is marked with the arrows. The
graph of ∆h is schematically shown by the curved lines. The figure shows how ∆h
can satisfy the inequality with only two zeros. However, ∆h is a polynomial so the
zeroes are at least second order. Thus, the third-order polynomial ∆h has four zeros.
More generally, any equality in ∂2Γ(xn, h(xn))∆h(xn) = 0 still forces N +1 zeros into
∆h ∈ PN . This contradicts 0 6= ∆h. Then (a) must be true. ///

Figure 1: Minimal number of zeros of a continuous ∆h for an alternating sequence of
length 5.

What Corollary 1 demonstrates is that the Kolmogorov Criterion is a general
optimization technique that is strong enough to specialize to specific problems—
namely, nonlinear polynomial optimization.
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4.1 Nonlinear Approximation of exp(−x)

The exponential function is a classical test of approximation schemes. This section
assesses one nonlinear approximation scheme of the exponential function: find a poly-
nomial

h(x) = h0 + h1x + h2x
2 + h3x

3 ∈ P3

that fits the exponential function as follows:

e−x ≈ h(x)−1.

One approach chooses the performance function:

Γ(x, h(x)) = (e−x − h(x)−1)2.

The objective function is

γ(h) := sup{Γ(x, h(x)) : x ∈ [0, 1]}.

The goal is to minimize the worst fit

min{γ(h) : h ∈ H}

over the subset H ⊂ P3 consisting of those polynomials that never vanish on the unit
interval. Although H is nonlinear, it is an open set of P3. As an open set, H admits
enough local linear space structure to apply the Kolmogorov Theory. The variation
of the performance function is

∂2Γ(x, h) = ∂h(e
−x − h−1)2 = 2(e−x − h−1)h−2.

Corollary 1 applies, provided the gradient ∂2Γ(x, h) does not vanish on the critical
set of γ(h): if x ∈ crit[γ(h)],

∂2Γ(x, h(x)) 6= 0 ⇐⇒ 2(e−x − h(x)−1)h(x)−2 6= 0.

The error term cannot vanish because h(x) is not a perfect fit to exp(x). The ratio-
nal function h(x)−2 cannot vanish on the unit interval. Consequently, no constraints
on h(x) really exist, except that h(x) never vanishes on the unit interval. There-
fore, Corollary 1 applies to characterize local minima—the gradient ∂2Γ(x, h) has an
alternating sequence of length 5. Specifically,

0 ≤ x1 < x2 < x3 < x4 < x5 ≤ 1

must exist in crit[γ(h)] such that

sign(∂2Γ(xn, h(xn))) = −sign(∂2Γ(xn+1, h(xn+1))).

11



Because
sign(∂2Γ(x, h(x))) = sign(e−x − h(x)−1),

a local minimum is characterized whenever the error term e−x − h(x)−1 alternates in
sign on crit[γ(h)]. Figure 2 illustrates such an alternating sequence close to a local
minimum. The coefficients of this near-local minimum are listed on the right of the
plot:

hmin(x) = 0.9998 + 1.0088x + 0.4453x2 + 0.2629x3.

The solid red segments mark those x ∈ [0, 1] in the 95% neighborhood of crit[γ(h)]:

|e−x − hmin(x)−1| > 0.95 × γ(hmin).

Figure 2: Error curve at near-local minimum.
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For completeness, slices of the error surface at hmin are also plotted. The error
surface is the graph of

h0 + h1x + h2x
2 + h3x

3 7→ γ(h)

and needs five dimensions to plot. By varying only two coefficients of hmin, we can see
a three-dimensional slice of this error. Figures 3, 4, and 5 show these slices of the error
function around hmin. The plots reveal two general features. First, the minimum looks
unique. Second, the error surface has non-differentiable “creases” that run through
the minimum. Both features have theoretical and numerical consequences. Section 9
discusses these consequences and opportunities for research with the remainder of the
research topics.

Figure 3: h2-h3 slice of the error surface at a local minimum.
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Figure 4: h1-h3 slice of the error surface at a local minimum.
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Figure 5: h0-h3 slice of the error surface at a local minimum.
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4.2 Approximating Outer Functions

Computing outer functions is a common task in applied harmonic analysis [5] and
signal processing [19]. The problem is to find a polynomial h(z) that approximates a
positive-valued function q(z) ≥ 0 as follows:

q(z) ≈ exp(ℜ[h(z)]) (z ∈ T).

Although the general problem is on the unit circle, applications restrict q(z) to be
“real” [17, Eq. 1.1]:

q(z) = q(z).

Because this real symmetry is inherited by best approximations [21], [17], it suffices
to approximate using polynomials with real coefficients. If h(z) has real coefficients
hn, we can expand h(z) as follows:

ℜ[h(z)] =
N∑

n=0

hnℜ[zn] (z = eiθ)

=
N∑

n=0

hn cos(nθ)

=
N∑

n=0

hnTn(x) (x = cos(θ)),

where Tn is the Chebyshev polynomial. Therefore, the real polynomial approximation
of real functions on the unit circle is equivalent to approximation on the real interval
[−1, 1] by real polynomials. Consider the real outer function

g(z) = (z − a)−1

with real pole a exterior to the unit disk. The magnitude of g(z) on the unit circle is
the target function:

q(z) = |g(z)|.

Although we are starting with the answer, any real 0 < q ∈ C(T) is approximated to
arbitrary precision by exp(ℜ[h(z)]), where h(z) is a real polynomial. Introduce the
performance function

Γ(z, h(z)) = |q(z)− exp(ℜ[h(z)])|2

and the objective function

γ(h) = sup{Γ(z, h(z)) : z ∈ T}.

The goal is to minimize the worst fit over the polynomials:

min{γ(h) : h ∈ PN}.

16



To apply Corollary 1, switch to the real formalism:

Γ(z, h(z)) = (Q(x)− exp(H(x)))2






Q(x) = q(z),
H(x) = ℜ[h(z)],
x = ℜ[z] = cos(θ)

.

The variation of the performance function is

∂2Γ(x, h) = ∂H(Q(x)− exp(H))2 = −2(Q(x) − exp(H)) exp(H).

Because exp(H) > 0, the following are equivalent:

• ∂2Γ(x, h(x)) admits alternating sequence of length N + 2 on crit[γ(h)];

• Q(x)− exp(H) admits alternating sequence of length N + 2 on crit[γ(h)].

Figure 6 compares the outer function and an approximation from the polynomials of
degree 6.

Figure 6: Outer function approximation.
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Figure 7 displays the error. The right side of the plot lists the coefficients of hmin.
The solid red segments mark those x ∈ [−1, 1] in the 90% neighborhood of crit[γ(h)]:

Γ(z, hmin(z)) > 0.90 × γ(hmin).

The last two segments run together on the 90% neighborhood. Close examination of
the plot shows that the error curve does alternate in sign eight times. Consequently,
hmin is a nearly optimum minimizer.

Figure 7: Outer function error.
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5 Optimization on A(D)

Helton and Merino [17] characterized disk algebra minimizers in their book. More
importantly, their book discusses several computer programs that compute these min-
imizers. This section shows that the Kolmogorov Criterion also characterizes local
minimizers of the disk algebra. The point is not to reinvent the results of Helton and
Merino but to show that the Kolmogorov Criterion provide a general framework for
optimization problems that also encompass the disk algebra. The disk algebra

A(D) := H∞(D) ∩ C(T,C) = 1 +̇ z+̇ z2 +̇ z3 +̇ . . .

is essentially the space of polynomials on the unit disk. Analogous to the previous
results on polynomial optimization, we will see that the support and alignment con-
ditions readily follow from the Kolmogorov Criterion. Mergelyan’s Theorem gives us
our support condition.

Theorem 2 (Mergelyan) [22, page 423] If K is a compact set in C with connected
component, if f ∈ C(K,C) is analytic on the interior of K, and if ǫ > 0, there exists
a polynomial p(z) such that ‖f − p‖C(K,C) < ǫ.

If the critical set crit[γ(h)] in not the entire unit circle T, Mergelyan’s Theo-
rem forces the existence of a ∆h ∈ A(D) that matches the performance function’s
variation:

∆h(z) = −∂2Γ(z, h(z)) (z ∈ crit[γ(h)]).

If the variation does not vanish on the critical set,

0 > ℜ[∂2Γ(z, h(z))∆h(z)] (z ∈ crit[γ(h)]),

the Minimum Test (Lemma 4) states that h ∈ A(D) cannot be a local minimum.
Conversely, if h ∈ A(D) is a local minimum, the critical set is the entire unit circle.

Lemma 7 (Support) Let U be an open subset containing T. Let Γ : U × C → IR
be C2. Define γ : A(D) → IR by

γ(h) := sup{Γ(z, h(z)) : z ∈ T}.

Suppose h ∈ A(D) is a local minimum of γ. Assume |∂2Γ(z, h(z))| > 0 on crit[γ(h)].
Then crit[γ(h)] = T.

Proof: If crit[γ(h)] is not the entire unit circle T, the continuity of ∂2Γ(z, h(z))
permits an application of Mergelyan’s Theorem: there exists a ∆h ∈ A(D) such that

∆h(z) = −∂2Γ(z, h(z)) (z ∈ crit[γ(h)]).
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Then ℜ[∂2Γ(z, h(z))∆h(z)] < 0 on crit[γ(h)]. The inequality is strict because ∂2Γ(z, h(z))
is assumed never to vanish. The Minimum Test (Lemma 4) asserts that h ∈ A(D)
cannot be a minimum of γ. This contradiction forces crit[γ(h)] = T. ///

Alignment is a little more tricky. The basic idea was pointed out in Section 3. A
local minimum will force ∂2Γ(z, h(z))∆h(z) to wind around zero. For w ∈ C(T,C),
let Wind[w(z),T] algebraically count the number of times w(z) winds around 0. The
“alternating condition” of the real polynomials turns into a positive winding number
at a local minimum:

Wind[∂2Γ(z, h(z)),T] > 0.

The trick is to link the phase of ∂2Γ(z, h(z)) to elements of A(D). The Poisson
integral is the starting point. For a complex Borel measure µ on T, the harmonic
extension of µ is its Poisson integral [22, page 252–255]:

P [µ](z) =
1

2π

∫ π

−π
ℜ

[
eit + z

eit − z

]
dµ(t) (z ∈ D).

Theorem 3 (Harmonic Extension) [22, page 254] Let h ∈ C(T,C) and define
H[h] on D by

H[h](reiθ) =

{
h(eiθ) r = 1
P [h](reiθ) r ∈ [0, 1)

.

Then H[h] ∈ C(D).

Thus, functions in C(T,C) admit harmonic extensions to D that are continuous
on D. Closely related is the corresponding analytic extension.

Theorem 4 [22, page 255] Suppose u is a real-valued function continuous on D and
harmonic on D. Then (on D) u is the Poisson integral of its restriction to T and
the real part of the analytic function

h(z) =
1

2π

∫ π

−π

eit + z

eit − z
u(eit)dt (z ∈ D).

Lemma 8 (Phase Alignment) Let U be an open subset containing T. Let Γ :
U × C → IR be C2. Define γ : A(D) → IR by

γ(h) := sup{Γ(z, h(z)) : z ∈ T}.

Suppose h ∈ A(D) is a local minimum of γ. Assume |∂2Γ(z, h(z))| > 0 on crit[γ(h)].
Then Wind[∂2Γ(z, h(z)),T] > 0.
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Proof: Suppose −k = Wind[∂2Γ(z, h(z)),T] ≤ 0. Continuity gives that k is finite.
Thus, the differential error term has phase like zk. Set

v(eiθ) = −Arg[zk∂2Γ(z, h(z))](eiθ).

Then v ∈ C(T). Use Theorem 3 to extend v to a real function continuous on D
and harmonic on D. Use Theorem 4 to extend v as the imaginary part of a analytic
function g = u+iv on D. For 0 < r < 1, define gr(z) = g(rz) on D. Then gr ∈ A(D).
Its imaginary part vr converges to v as r → 1. Set ∆hr = exp(gr). Then ∆hr belongs
to A(D) and so does zk∆hr(z). Then as r → 1 there holds

ℜ
[
∂2Γ(z, h(z))zk∆hr(z)

]
= ℜ

[
|∂2Γ(z, h(z))| e−iv(z)|∆h(z)|eivr(z)

]
> 0.

Then the Minimum Test (Lemma 4) asserts that h cannot be a minimum of γ. This
contradiction forces the winding number to be strictly positive. ///

The upshot of Lemmas 7 and 8 is that if h ∈ A(D) is a local minimum:

• Γ(z, h(z)) is constant on T or crit[γ(h)] = T.

• Wind[∂2Γ(z, h(z)),T] > 0.

As with the polynomials, the disk algebra has enough structure to force a converse—
provided the differential does not vanish. To see this, suppose crit[γ(h)] = T and
Wind[∂2Γ(z, h(z)),T] > 0 but h ∈ A(D) is not a local minimum. By the Descent
Lemma, there exists a nonzero ∆h ∈ A(D) such that

0 ≥ ℜ[∂2Γ(z, h(z))∆h(z)] (z ∈ T). (1)

Figure 8 illustrates the geometry. For fixed z ∈ T, the complex vector ∂2Γ(z, h(z))
determines the solid half-plane consisting of all ∆h ∈ C that satisfy Equation (1).
Figure 8 also plots the conjugate ∂2Γ(z, h(z)). The plot shows ∆h must belong to
the negative cone

∂2Γ(h)⊖(eiθ) := {v ∈ IR2 : 0 ≥ ∂2Γ(eiθ, h(eiθ))
T
v},

where we switch to real coordinates in the negative cone. Referring again to Figure 8,
we see if ∂2Γ(z, h(z)) winds positively around zero, the negative cone ∂Γ(h)⊖(z) must
wind negatively around zero. Because ∆h belongs to this cone that winds negatively
around zero, ∆h must also wind negatively around zero (provided it that never van-
ishes on T). But ∆h belongs to A(D), so ∆h must have a non-negative winding
number. These contradictory winding numbers for ∆h imply that ∆h cannot exist as
a “direction of descent.” Thus. the positive winding number of the differential forces
h ∈ A(D) to be a local minimum. This is the geometric idea of the winding number.
The technical part is to handle when ∆h does have zeros on T. The following result
summarizes our Kolmogorov approach that captures a slightly weaker result than
obtained by Helton and Merino in 1998.
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Figure 8: Solid half-plane marking ∆h ∈ C for which ℜ[∂2Γ∆h] ≤ 0.

Corollary 2 [17, Theorem 9.3.1] Let U be an open subset containing T. Let Γ :
U × C → IR be C2. Define γ : A(D) → IR by

γ(h) := sup{Γ(z, h(z)) : z ∈ T}.

Assume |∂2Γ(z, h(z))| > 0 on T. Then the following are equivalent:

(a) h ∈ A(D) is a local minimum of γ.

(b) Γ(z, h(z)) is constant on T and Wind[∂2Γ(z, h(z)),T] > 0.

Proof: Lemmas 7 and 8 give that (a) implies (b). For the converse, assume (b) holds
but that (a) is not true: that h ∈ A(D) is not a local minimum. The Descent Lemma
(Lemma 3) provides a nonzero ∆h ∈ A(D) such that 0 ≥ ℜ[∂2Γ(z, h(z))∆h(z)] on
T. Let

k = Wind[∂2Γ(z, h(z)),T] > 0.

Then Γ being C2 with a nonzero variation permits us to write

∂2Γ(eiθ, h(eiθ)) = |∂2Γ(eiθ, h(eiθ))|eikθeiv(eiθ),

where v(eiθ) is real and continuous. In terms of the inequality, there holds for all
z ∈ T:

0 ≥ ℜ[|∂2Γ(z, h(z))|eiv(z)∆h(z)]. (2)
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Use Theorem 3 to extend v to a real function continuous on D and harmonic on D.
Use Theorem 4 to extend v as the imaginary part of a analytic function g = u + iv
on D. Observe exp(g)∆h ∈ H∞(D) so that

0 =
1

2π

∫ π

π
eikθeg(eiθ)∆h(eiθ)dθ.

Take the real part of both sides to get

0 =
1

2π

∫ π

π
ℜ[eikθeiv(eiθ)∆h(eiθ)] eu(eiθ)dθ.

Equation (2) gives that the “real part” of the integrand is negative so that

0 = ℜ[eikθeiv(eiθ)∆h(eiθ)] a.e.

Continuity implies that equality holds everywhere. ///

5.1 Hyperbolic Approximation to (z − a)−1

A canonical problem in H∞ Engineering is computing the hyperbolic distance from
the disk algebra to a given function [14]. The pseudo-hyperbolic distance1 ρ between
two elements g, h ∈ D is [27, page 58]:

ρ(g, h) :=

∣∣∣∣∣
g − h

1 − gh

∣∣∣∣∣ . (3)

Fix g ∈ L∞(T) and assume ‖g‖∞ < 1. Let h vary over the disk algebra with ‖h‖∞ <
1. The pseudo-hyperbolic distance between g(z) and h(z) defines the performance
function:

Γ(z, h(z)) :=

∣∣∣∣∣
g(z) − h(z)

1 − g(z)h(z)

∣∣∣∣∣

2

; (z = eiθ).

The objective function is

γ(h) := sup{Γ(z, h(z)) : z ∈ T}.

The minimization problem is

inf{γ(h) : h ∈ A(D)}.

1Also known as the Poincaré hyperbolic distance function and is a metric on D [26].
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Corollary 2 characterizes local solutions by the flatness and winding conditions:

• Γ(z, hmin(z)) is constant on T,

• Wind[∂2Γ(z, h(z)),T] > 0,

provided g ∈ C2. For example, to make a function not in the disk algebra, put a pole
at 0 ≤ a < 1 and set

g(z) =
1

2

1 − a

z − a
.

The scaling puts g(z) into the unit ball of L∞(T). Figure 9 shows the image of
g(z) in the unit disk. The goal is to approximate g(z) from the disk algebra in the
pseudo-hyperbolic metric.

Figure 9: g(z) for z ∈ T.
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The best approximation is a constant:

hmin = 0.1883.

That is, hmin minimizes the pseudo-hyperbolic distance g(z) to the disk algebra.
Figure 10 plots the complex error curve:

ρC(g(z), hmin(z)) =
g(z) − hmin(z)

1 − g(z)hmin(z)
.

The figure shows that the error is circular. Helton insightfully saw that this circular-
ity of the error transplanted Nehari’s Theorem from the complex plane to the disk
equipped with the hyperbolic metric. The full power of Helton’s insight becomes ap-
parent when he extended this result to a nonlinear performance function—this error
curve actually encodes a flatness condition and the winding number condition.

Figure 10: Complex error curve of ρC(g(z), hmin(z)) for z = exp(jθ).
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Figure 11 plots the error curve at the minimizer:

Γ(z, hmin(z))1/2 :=

∣∣∣∣∣
g(z) − hmin(z)

1 − g(z)hmin(z)

∣∣∣∣∣ ; (z = eiθ).

Examination of the vertical axis shows that Γ(z, hmin(z)) is numerically flat:

Γ(z, hmin(z)) = constant.

Figure 11: Flatness of Γ(z, hmin(z)).
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The differential of the performance function at the minimizer is

∂2Γ(z, hmin(z)) =
(hmin(z) − g(z))(1 − g(z)g(z))

(1 − g(z)hmin(z))(1 − g(z)hmin(z))2
.

Figure 12 plots this differential. The differential winds once around zero, which is the
winding condition:

Wind[∂2Γ(z, hmin(z))] ≥ 1.

As expected, the winding number of the differential is positive at the minimizer.
What is unexpected is that the differential is also flat.

Figure 12: Differential ∂2Γ(z, hmin(z)) at the minimizer.

5.2 Helton’s Example

Helton and Merino [17, page 142] offer a computer solution to the minimization
problem:

γA := inf{γ(h) : h ∈ A(D)}

on the disk algebra for the performance function

Γ(z, h(z)) = |0.8 + (z−1 + h(z))2|2. (4)
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The power of Helton and Merino’s solution overcomes the infinite dimensional nature
this minimization problem by using Nehari’s Theorem. They estimate that

1.0005821 ≈ γA = inf{γ(h) : h ∈ A(D)}.

Our approach is absolutely pedestrian—simply approximate the disk algebra by the
polynomials. This is a typical engineering approach because the engineer typically has
only a finite number of parameters to synthesize a solution. This engineering approach
becomes less pedestrian by comparing the suboptimal result against the best bound of
Helton and Merino [17]. Benchmarking engineering solutions against the best bound
is becoming common in impedance matching [13], [24], [4], [3]; amplifier optimization
[14], [2]; and control problems [15], [17].

For example, Figure 13 plots the performance function of Equation (4) evaluated
on the minimizer restricted to the polynomials of degree 11. The plot shows that this
minimum is relatively close to the best bound:

1.0005821 ≈ γA < inf{γ(h) : h ∈ P11} = 1.0149.

Whether this suboptimal solution is “good enough” is the decision that an engineer
must make.

Figure 13: Flatness of the performance function.
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For completeness, Figure 14 plots the variation of the performance function:

∂2Γ(z, h(z)) = 2(z−1 + h(z)))(0.8 + (z−1 + h(z))
2
).

The winding number of the variation is

Wind[∂2Γ(z, hmin(z))] = 1

so that the alignment condition is satisfied. The relative flatness and alignment of
hmin led us to suspect that hmin is close to the disk algebra minimizer

hA := argmin{γ(h) : h ∈ A(D)}.

Figure 14: Winding Number of ∂2Γ(z, hmin(z)).
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Moreover, the minimizers computed from increasing the degree of the polynomials
should be “converging” to the disk algebra minimizer:

hN = argmin{γ(h) : h ∈ PN} → hA.

Figure 15 exemplifies this belief by plotting the performance γ(hmin,N) as a function
of the degree N of the polynomials. The plot shows that near optimal performance is
achieved on the polynomials of degree N ≥ 25. Thus, knowing the best bound from
the Helton-Merino computations provides the critical stopping point. Indeed, the
minimum at N = 29 is starting to creep beneath the Helton-Merino bound. It is not
that the Helton-Merino bound is incorrect—this creep is caused by over-interpolating
on the finite samples of the unit circle [24]. Nevertheless, Figure 15 graphically raises
the fundamental question:

Question 1 How do the finite-dimensional but realizable minimizers hN approximate
the disk-algebra minimizer hA?

Figure 15: Performance as a function of the degree of the polynomials.
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In particular, relating the rate of converge of hN → hA to the smoothness of
Γ(z, h(z)) offers a fascinating research opportunity to insert extrapolation techniques
into H∞ Theory. Likewise, the flatness and winding number conditions offer ad-
ditional measurements of the quality of a suboptimal solution, which raises classic
question regarding a suboptimal solution:

γ(h∆γ) ≤ γA + ∆γ.

Assuming convergence does happen, Question 2 asks:

Question 2 How fast does h∆γ converge to hA as ∆γ → 0?

However, the far more useful question is far more difficult, particularly when h∆γ

is known only on a finite number of points on the unit circle:

Question 3 Suppose {zk} is a dense sampling of the unit circle;

zk = ejk/K (k = 0, . . . , K − 1),

where K ≫ 1. Assume on this sampling of the unit circle,

Γ(zk, h∆γ(zk)) ≤ γA + ∆γ.

How far is h∆γ from hA?

These questions are the standard ones. Helton and Merino [17, page 141] exploit
the flatness condition to measure the quality of a suboptimal solution

flat(hmin) := 1 −
sup{Γ(z, hmin(z))}

inf{Γ(z, hmin(z))}
.

As the flatness tends to zero, the performance function tends to a constant value. So,
the performance of a suboptimal solution and its flatness are multiple criteria for the
quality of this numerical solution.
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For example, Figure 16 displays the performance of a suboptimal solution from
the polynomials of degree 11. The figure shows a worse performance than reported
from Figure 13, but better flatness.

Figure 16: Flatness of the performance function.

Table 2 summarizes the performance of the suboptimal solutions from the poly-
nomials of degree 11. The table shows that one solution attains a smaller objective
but worse flatness. Consequently, the engineer can trade off the objective function
against the flatness function. The formal mathematical approach to these engineering
trade-offs is multiobjective optimization.

Table 2: Assessing suboptimal solutions from P11.

Table 12.1 [17] Figure 13 Figure 16
Performance 1.000582 1.0149 1.0274

Flatness 0.0020 0.0503 0.0462
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6 Multiobjective Optimization

Multiobjective optimization is a powerful tool to trade off competing objectives. The
objective functions are stacked in a vector and vector-valued optimization is under-
taken. The beauty of this approach is that the impossible problems of simultaneously
rationalizing units and adjusting scaling factors is avoided. Introduce the partial order
on IRN by declaring

u ≤ v ⇐⇒ v − u ∈ IRN
+ ,

where IRN
+ denotes the closed positive orthant

IRN
+ := {y ∈ IRN : yn ≥ 0}.

Let γ : X ⊆ IRM → IRN denote the mapping

γ(x) :=




γ1(x)
γ2(x)

...
γM (x)




.

Each γm is called an objective function so that γ is called a multiobjective function.
We want to solve the vector-valued minimization of γ on X. Boyd and Vandenberghe
[6, page 20] have generalized the notion of a “minimizer.” Denote the image of X
under γ by

γ(X) := {γ(x) : x ∈ X}.

Any γ(x) ∈ γ(X) is called a minimum element of γ(X), provided

γ(x) ≤ γ(x′)

for all x′ ∈ X. A convenient notation for this inequality between a point γ(x) and
the set of all the γ(x′)’s is

γ(x) ≤ γ(X).

The key to a minimal element is that the inequality holds on all the image γ(X).
Equivalently, this inequality states that attaching the positive orthant at γ(x) will
subsume all the elements in γ(X):

γ(X) ⊆ γ(x) + IRN
+ .
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Figure 17 illustrates the geometry of the minimum element in IR2 and offers a
strong geometric proof that the minimum element is unique.

Figure 17: The minimum element.

Not all sets admit a minimum element. More commonly, we look for minimal
elements as illustrated in Figure 18. Any γ(x) ∈ γ(X) is a minimal element of γ(X),
provided [6, page 21]:

γ(y) ≤ γ(x) =⇒ γ(y) = γ(x).

Figure 18 shows this is equivalent2 to
(
γ(x) − IRN

+

) ⋂
γ(X) = {γ(x)}.

Figure 18: A minimal element.

2More restrictive is the notion of weak minimizers [10]: (γ(x) − int[IRN

+ ]) ∩ γ(X) = ∅.
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These definitions occur in the range of γ : X ⊆ IRM → IRN . In the domain of
γ, any x ∈ X is called Pareto optimal, provided γ(x) is a minimal element of γ(X)
[6, page 102]. Figure 19 illustrates all minimal elements, or the images of the Pareto
optima, as the dark line on the boundary of γ(X). Regardless of the shape of γ(X),
finding its Pareto set is fundamental. From Das and Dennis [12]:

“Very often in engineering applications, the desired result helpful in facili-
tating design is a whole collection of Pareto optimal points, representative
of the entire spectrum of efficient solutions. Thus, ideally, the desired so-
lution is the entire Pareto optimal set.”

Figure 19: The minimal elements.

In summary,

Computing all Pareto optima is the Fundamental Goal
of Multiobjective Optimization.

Of the many multiobjective optimization schemes, the Goal Attainment Method
is well-suited for a wide range of applications. Figure 20 illustrates the method. The
user specifies a vector of design goals γu such that

γu ≤ γ(X)

and a vector of non-negative weights w. The minimizer attempts to shoot from γu

along the direction of the weight vector w and hit the boundary of γ(X). The stopping
point, if it exists, may be a minimal element of γ(X).
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Figure 20: The Goal Attainment Method.

The Goal Attainment Method [8]. Given γ : X ⊆
IRM → IRN . Select a design goal γu ≤ γ(X). Select a
weight vector w ∈ IRN

+ .

minimize{t ∈ IR}

subject to x ∈ X and

γ(x) − tw ≤ γu.

Das and Dennis [12] introduce the normal-bound intersection (NBI) method for
computing the Pareto set using the global minimizers:

xn = argmin{γn(x) : x ∈ X} (n = 1, . . . , N).

These minimizers determine the utopic point

γ⋄ :=




γ1(x1)
γ2(x2)

...
γN (xN)




that is a pseudo-minimum of γ(X). Figure 21 shows that the utopic point is within
the “line of sight” of the Pareto points by shooting along the weight vector w ≥ 0.
The claim is that by setting γ⋄ = γu and varying the weight vector w ≥ 0, a superset
of the Pareto set can be computed. In practice, we can only sample this superset.
Das and Dennis [12] point out that this sampling may not be uniformly distributed.
Their key claim is that the NBI method produces a uniform sampling of the Pareto
set. Thus, practical questions can be raised about the efficacy of the multiobjective
minimizers.
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Figure 21: The utopic point γ⋄.

Figure 18 shows that Pareto optimal is a global definition. All of the image

γ(H) = {γ(x) : x ∈ X}

must be tested. A local notion of Pareto optimal will be needed.

Definition 1 An element hp ∈ H is called locally Pareto-optimal, provided a neigh-
borhood U of hp exists such that for all h ∈ U

γ(h) ≤ γ(hp) =⇒ γ(h) = γ(hp).

Equivalently, hp ∈ H is not locally Pareto-optimal if a sequence ∆hk ∈ H exists
that converges to zero and satisfies

γm(h + ∆hk) ≤ γm(hp) (m = 1, . . . , M),

with strict inequality for at least one index. The image of a Pareto point lies on the
boundary of γ(H). The image of a local Pareto point may actually lie in the interior
of γ(H).

7 The Multiobjective Kolmogorov Criterion

The Kolmogorov Criterion generalizes to the multiobjective problem. The first result
is that a direction of descent exists at points that are not locally Pareto-optimal.

Lemma 9 (Multiobjective Descent) Let Z ⊂ C be compact. Let H be a closed
linear subspace of C(Z,C). Let U be an open subset containing Z. Let Γ : U × C →
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IRM be C2. Define γ : H → IRM by

γ(h) :=




γ1(h)
γ2(h)

...
γM(h)




γm(h) := sup{Γm(z, h(z)) : z ∈ Z}.

Assume that H is boundedly compact. If h ∈ H is not locally Pareto-optimal, a
nonzero ∆h ∈ H exists such that

0 ≥ ℜ[∂2Γm(x, h(x))∆h(x)] (x ∈ crit[γm(h)])

for m = 1, . . . , M .

Proof: If h ∈ H is not locally Pareto-optimal, a sequence {∆hk} ∈ H exists that
converges to zero for which

γm(h + ∆hk) ≤ γm(h)

with strict inequality in at least one index. Let tk := ‖∆hk‖∞ and set uk := t−1
k ∆hk.

By selecting a subsequence, the bounded compactness of H asserts the existence of a
limit point: uk → ∆h ∈ H. By construction, ∆h is nonzero. For all x ∈ crit[γm(h)],
Lemma 2 provides the expansion:

γm(h + ∆hk) ≥ Γm(x, h(x) + ∆hk(x))

= Γm(x, h(x)) + ℜ[∂2Γm(x, h(x))∆hk(x)] + O[t2k]

= γm(h) + ℜ[∂2Γm(x, h(x))∆hk(x)] + O[t2k].

Subtract γm(h) from both sides, then divide by tk > 0 to get

0 ≥ ℜ[∂2Γm(x, h(x))uk(x)] + O[tk].

Taking the limit as k → ∞ gives

0 ≥ ℜ[∂2Γm(x, h(x))∆h(x)] (x ∈ crit[γm(h)])

for m = 1, . . . , M . ///

Roughly speaking, this lemma provides a “candidate” for a direction of descent at
those points not locally Pareto-optimal. The quotes are used because the linearization
may have enough information to dominate the function in the neighborhood of the
point. If the derivative does not vanish, this problem is eliminated and the following
Multiobjective Minimization Test is available.
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Lemma 10 (Multiobjective Minimization Test) Let Z ⊂ C be compact. Let H
be a closed linear subspace of C(Z, C). Let U be an open subset containing Z. Let
Γ : U × C → IRM be C2. Define γ : H → IR by

γ(h) :=




γ1(h)
γ2(h)

...
γM(h)




γm(h) := sup{Γm(z, h(z)) : z ∈ Z}.

Let h ∈ H. If there exists a ∆h ∈ H such that

0 > ℜ[∂2Γm(x, h(x))∆h(x)] (x ∈ crit[γm(h)]),

for m = 1, . . . , M , then h ∈ H is not locally Pareto-optimum for γ.

Examination of both results reveals a new phenomenon. For clarity, consider the
real-valued case in C([0, 1], IR). Suppose h ∈ H admits a direction of descent ∆h ∈ H.
The MultiDescent Lemma (Lemma 9) forces

0 ≥ ∂2Γm(x, h(x))∆h(x) x ∈ crit[γm(h)]

for m = 1, . . . , M . What if two critical sets share a common element? Specifically,
suppose x± ∈ crit[γm1

(h)] ∩ crit[γm2
(h)] with differing signs:

0 > ∂2Γm1
(x±, h(x±)) and 0 < ∂2Γm2

(x±, h(x±)).

This forces ∆h(x±) = 0. This phase splitting of the differential requires some consid-
eration and is best approached through an example on the polynomials.

8 Multiobjective Optimization on PN

Phase splitting forces additional constraints that depend on local smoothness. Ex-
amining a few examples is worthwhile before setting out a general theory.

8.1 Approximating exp(±x)

The problem is simultaneous polynomial approximation: Find a polynomial

h(x) = h0 + h1x + h2x
2 + h3x

3

that fits the exponential function and its reciprocal:

ex ≈ h(x)

e−x ≈ h(x)−1.
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Choose the performance functions as follows:

Γ1(x, h(x)) = (ex − h(x))2

Γ2(x, h(x)) = (e−x − h(x)−1)2.

The objective functions are

γ1(h) := sup{Γ1(x, h(x)) : x ∈ [0, 1]}

γ2(h) := sup{Γ2(x, h(x)) : x ∈ [0, 1]}.

The goal is to minimize the multiobjective function

γ(h) :=

[
γ1(h)
γ2(h)

]

on the nonlinear subset H ⊂ P3 consisting of those polynomials that never vanish on
the unit interval.

Figure 22 sketches out γ(H). The blue dots plot the value of γ(h) on random
polynomials h ∈ H. The red square is the starting point for the numerical minimizing
method. The diamond marks where the method terminated.

Figure 22: Random values of γ(h).
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The minimizer was computed using the Goal Attainment method with equal
weights and goals:

γ(h) − tw ≤ γu; w =

[
1
1

]
, γu = 10−5

[
1
1

]
.

Figure 23 plots the error curves at this numerical minimizer. To understand this
plot, compute the partials of each performance function:

∂2Γ1(x, h(x)) = −2(ex − h(x))

∂2Γ2(x, h(x)) = +2(e−x − h(x)−1)h(x)−2.

A minimizer of γ1(h) on H ⊂ P3 is characterized whenever ∂2Γ1(x, h(x)) exhibits
an alternation sequence of length 5, which forces the error function −(ex − h(x)) to
alternate five times. The upper panel of Figure 23 shows that this alternation—γ1(h⋄)
is at its minimal value. Because of the unicity of best polynomial approximations,
any nonzero perturbation of h⋄ degrades the performance γ1 [11]:

0 6= ∆h ∈ P3 =⇒ γ1(h⋄) < γ1(h⋄ + ∆h).

Figure 23: Error curve at local minimum h⋄.
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Consequently, any nonzero perturbation of h⋄ that improves the second objective:

γ2(h⋄ + ∆h) < γ2(h⋄)

must degrade the first objective, that is, γ(h⋄) is a minimal element of γ(H) and h⋄ is
Pareto optimal. Likewise, a minimizer of γ2(h) on H ⊂ P3 is also characterized when
the error function (e−x − h(x)−1) alternates five times. The lower panel of Figure 23
shows that γ2(h⋄) has only one critical point—at the endpoint of the unit interval.
Although not an example of phase splitting, the figure does show that the critical
sets of the individual objective functions can easily have common elements.

8.2 Characterization

For multiobjective optimization on the polynomials, the alternating condition now
expands to include all the critical sets of the objective functions while phase splitting
forces zeros into the “tangent space” of the objective function. In the polynomials,
the alternation and phase splitting balance out. Define

crit[γ(h)] =
M⋃

m=1

crit[γm(h)].

Let crit±[γ(h)] denote those critical points for which the differential phase splits.
Formally, x± ∈ crit±[γ(h)] provided x± ∈ crit[γm1

(h)] ∩ crit[γm2
(h)] and

0 > ∂2Γm1
(x±, h(x±))∂2Γm2

(x±, h(x±)).

Lemma 11 Suppose Γ : [0, 1] × IR → IRM is C2. Define γ : C([0, 1], IR) → IRM by

γ(h) :=




γ1(h)
γ2(h)

...
γM (h)




γm(h) := sup{Γm(x, h(x)) : x ∈ [0, 1]}.

Let h ∈ PN . Assume ∂2Γm(h) 6= 0 on crit[γm(h)]. On crit[γm(h)] \ crit±[γ(h)], define

s(x) :=

{
1 x ∈ crit[γm(h)] ∂2Γm(x, h(x)) > 0

−1 x ∈ crit[γm(h)] ∂2Γm(x, h(x)) < 0
.

If s(x) alternates at least N + 2 − |crit±[γ(h)]| times, then h ∈ PN is a local Pareto
point of γ.
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Proof: Let Nc := |crit±[γ(h)]| and assume s(x) alternates at least N + 2−Nc times.
Suppose that h ∈ PN is a not locally Pareto-optimal. Lemma 9 furnishes ∆h ∈ PN

that is nonzero and

0 ≥ ∂2Γm(x, h(x))∆h(x) (x ∈ crit[γm(h)])

for m = 1, . . . , M . Because ∂2Γm(x, h(x)) does not vanish on crit[γm(h)], it follows
that ∆h must vanish on crit±[γ(h)]. Factor ∆h(x) as

∆h(x) = p(x)∆h̃(x)

where p ∈ PNc contains the zeros of crit±[γ(h)] and ∆h̃(x) ∈ PN+2−Nc is zero-free
on crit±[γ(h)]. However, 0 ≥ s(x)∆h̃(x) on crit[γ(h)] \ crit±[γ(h)]. The N + 2 − Nc

alternations of s(x) force ∆h̃ to have at least N + 1 − Nc zeros. Consequently, ∆h̃
must be zero, which forces ∆h = 0 and contradicts that ∆h is nonzero. Thus, h ∈ H
must be a local Pareto point. ///

The beauty of Lemma 11 is that all the critical sets contribute to the alternating
sequence—decreased by the phase splitting. Although phase splitting obscures the
converse, we have enough machinery to explore the Pareto sets.

8.3 The Pareto Set of exp(±x)

Section 6 pointed out that the fundamental problem of multiobjective optimization
is computing the Pareto set of γ : H → IRN . Recall that the Pareto set resides
in H. Consequently, the Pareto set depends on the parameterization of H and γ.
From this computational point of view, the Pareto set is difficult to visualize and to
use in engineering trade-offs. In contrast, Pareto image—the set of all the Pareto
points mapped by γ into IRN—is far more practical and computationally available.
Typically, the range of γ has low dimension (N ≤ 3) so that the engineer can see the
performance and make decisions about trade-offs.

How to get the Pareto image when its Pareto set is unknown is an excellent
question. Because the Pareto image consists of the minimal elements of γ(H), we
can “sketch” γ(H) by randomly sampling h ∈ H and plotting the random points
γ(h). As the sampling gets denser, the image γ(H) starts to fill in and the boundary
containing the minimal elements starts to appear.

For example, consider the objective function of Section 8.1 that approximates
the exponential function and its reciprocal by polynomials h ∈ P3. The objective
function

γ(h) =

[
γ1(h)
γ2(h)

]
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consists of the performance functions

Γ1(x, h(x)) = (ex − h(x))2

Γ2(x, h(x)) = (e−x − h(x)−1)2

that have variation

∂2Γ1(x, h(x)) = −2(ex − h(x))

∂2Γ2(x, h(x)) = +2(e−x − h(x)−1)h(x)−2.

The domain H of γ is the nonvanishing polynomials of P3. Figure 24 sketches the
image of γ. The plot is a closeup of Figure 22. The blue dots in the upper right are
γ(h) for random polynomials in P3. The red square marks the starting point for the
minimizing method. The green diamonds are the method’s terminal points.

Figure 24: Estimating the Pareto points for γ(P3).
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The Goal Attainment Method computed the minimizers using the weight vector

w =

[
cos(θw)
sin(θw)

]
.

As θw sweeps from 0◦ to 90◦, the Goal Attainment Method sweeps out what are
numerically local Pareto with images marked by the green diamonds. This numerical
approximation of the Pareto image allows an engineer to see the trade-off between
the objective functions. Figure 24 also numbers selected points. The following plots
discuss the Pareto condition for each numbered point.

Figure 25 shows the error curves of Point #1. The red segments mark the critical
set regions. The numbers on the right are the coefficients of the polynomial. The
lower plot exhibits an alternating sequence of length 5. Lemma 11 observes that this
polynomial is indeed locally Pareto-optimal.

Figure 25: Pareto Test for Point #1.
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Figure 26 shows the error curves of Point #2. The lower plot now exhibits an
alternating sequence of length 3 while the upper plot picks up the alternating sequence
2—in phase with the lower plot—to get a generalized alternating sequence of length
5. Lemma 11 observes that this polynomial (coefficients listed on the right) is locally
Pareto-optimal.

Figure 26: Pareto Test for Point #2.
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Figure 27 shows the error curves of Point #3. Here, the alternating sequence
splits between the two error curves. This plot is a splendid example of Lemma 11.
Because this generalized alternating sequence has length 5, Lemma 11 verifies that
the polynomial under test is locally Pareto-optimal.

Figure 27: Pareto Test for Point #3.
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Figure 28 shows the error curves of Point #4 and shows that the alternating
sequence resides in the upper plot. Looking at all these plots in sequence, we see
the alternating sequence starting in the lower plot (Point #1), splitting between the
lower and upper plots (Points #2 and #3), and moving into the upper plot (Point
#4). Lemma 11 applies in all cases and verifies that the polynomials under test are
locally Pareto-optimal.

Figure 28: Pareto Test for Point #4.

9 The Kolmogorov Approach

The Kolmogorov approach to optimization is a general method that yields surprisingly
concrete results when applied to the objective function

γ(h) = sup{Γ(z, h(z)) : z ∈ Z}.

Section 4 demonstrated the effectiveness of the Kolmogorov approach for charac-
terizing the minimizers of γ(h) on the polynomials. The classical alternating con-
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dition for polynomial approximation is generalized to a new alternating condition
from ∂2Γ(z, h(z)). On the polynomials, we have essentially a finite-dimensional and
real-valued minimization problem.

In contrast, Section 5 applies the Kolmogorov approach to the disk algebra—an
infinite-dimensional domain consisting of complex-valued functions. The Kolmogorov
approach readily characterizes the minimizers in the disk algebra. Although this result
belongs to Helton and Merino [17], this sections shows that the Kolmogorov approach
provides a general method to attack these minimization problems. This section also
showed how to link the polynomial minimizers to the disk algebra bounds obtained
by Helton and Merino [17]. This approach allows the engineer to “benchmark” these
suboptimal solutions against an absolute best bound. This benchmarking is a splendid
example of how pure mathematics can enhance traditional engineering [2], [4], [3].
Indeed, nothing drives an engineer to seek an optimal solution as striving against a
“best bound.”

Not only does the Kolmogorov approach give the basic results for these mini-
mization problems, it generalizes to minimization problems of several objective func-
tions. Section 6 lifts the single-objective minimization problem to the multiobjective
minimization problem. Section 7 develops the multiobjective Kolmogorov approach
Section 8 applies this approach to multiobjective optimization on the polynomials.
The new alternating condition of the single-objective case is generalized to a new
alternating condition that sweeps over the objective functions. The technical compli-
cation that stymies a complete characterization is the possibility of “phase splitting.”
Nevertheless, there exists enough theory to identify locally optimal minimizers.

The Kolmogorov approach should also apply to multiobjective optimization on
the disk algebra. Indeed, Helton and Whittlesey [18], Helton and Vityaev [16], and
Helton and Merino [17] generalize the single-objective minimization problem to a
multiobjective problem on the disk algebra.

We conclude by making explicit a fruitful point of contact between the disk algebra
and the finite-dimensional spaces of polynomials in a robust filter-design problem.
The problem is to make a trade-off between realizing a transfer function and its
associated sensitivity to design parameters [25].

For example, the transducer power gain GT of a low-pass ladder can be parame-
terized as

GT (h; jω) :=
1

1 + |h(jω)|2
,

where h(jω) is a real-valued polynomial and ω is the radial frequency. By making a
bilinear transform and a slight abuse of notation, the problem can be put on the unit
circle:

GT (h; z) :=
1

1 + |h(z)|2
, (z = ejθ)
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where h(z) is a real-valued polynomial. The optimization of the transducer power
gain is the problem of finding a polynomial h(z) so that GT (h) follows a user-specified
design:

GT (h; z) ≈ GT,u(z).

We specify a Gaussian filter as plotted in Figure 29. The goal is to build a low-pass
ladder with a gain GT that is close to the Gaussian filter. One measure of “filter
error” is

Γ1(z, h(z)) = (GT (h; z) −GT,u(z))2; (z = ejθ).

Figure 29: User-specified Gaussian filter.

Allied with the design of the low-pass ladder is its sensitivity—the variation of
the gain as a function of its parameterizing polynomial:

G(h + ∆h) = G(h) + 2ℜ[∂hG(h)∆h] + . . . .

With the variation of the gain given as

∂hG(h) = −G(h)2h,

one measure of the “sensitivity” of the design is then

Γ2(jω, h(jω)) = |ℜ[∂hG(h; jω)]|2 = |ℜ[G(h)2h|2.
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Consequently, the problem of minimizing

γ(h) =

[
γ1(h)
γ2(h)

]

is the problem of finding a filter of minimum sensitivity that is closest to the specified
design.

Figure 30 plots random samples of γ(h) in the Filter-Sensitivity plane for the
polynomials of third degree (h ∈ P3) as the blue dots. The red square is the starting
point for the minimizing method. The green squares are the numerical minimizers.

Figure 30: Pareto surface in the Filter-Sensitivity plane.

The Goal Attainment Method computes these minimizers using the weight vector

w =

[
cos(θw)
sin(θw)

]
.

As θw sweeps from 0◦ to 90◦, the Goal Attainment Method sweeps out numerical
approximations to local Pareto points with images marked by the green diamonds.
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This numerical approximation of the Pareto image shows an engineer the trade-off
between the filter accuracy and sensitivity. The curve generally shows that sensitivity
increases as the error decreases. The curve also hints at the existence of fascinating
fine structure. The single point that has near optimal gain and low sensitivity cer-
tainly attracts the attention of an engineer and brings the rest of the “connected”
Pareto image into question.

Figure 31 increases the degree of the polynomials from 3 to 6. The plot reveals that
the Pareto image does have a fine structure—a fine structure of “high-performance”
points.

Figure 31: Pareto surface for P6.

When both plots are put in the context of optimizing over a family of polynomials
PN for N → ∞, two issues become apparent. First is the problem of determining if a
given point belongs to the Pareto image. This problem is specific to the multiobjective
optimization for polynomials and the general characterization problem raised in the
beginning of this report—can an answer be recognized? The second issue puts both
plots in the context of the best bounds that follow from multiobjective optimization
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on the disk algebra. What would be very helpful for the engineer is a plot of the best
possible bounds attainable on the disk algebra. This “ultimate Pareto image” would
bound all the polynomial cases and let the engineer trade off filter performance as a
function of degree. Thus, this simple filter design problem is an excellent point-of-
departure for research in multiobjective optimization.
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